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As we know, the Chebyshev weight w(x)=(1&x2)&1�2 has the property: For
each fixed n, the solutions of the extremal problem �1

&1 [>n
k=1 (x&xk)]m w(x) dx

=minP=xn+ } } } �1
&1 P(x)m w(x) dx for every even m are the same. This paper proves

that the Chebyshev weight is the only weight having this property (up to a linear
transformation). � 1999 Academic Press

1. INTRODUCTION AND MAIN RESULTS

Let w be a weight (function) on R satisfying that w(x)=0 for |x|>1 and
�1

&1 w(x) dx=1 and let 2(w) denote the smallest closed interval such that
�2(w) w(x) dx=1. Denote by PN the set of polynomials of degree at most N.
According to Theorem 4 in [2], for even m # N if |n(x) :=>n

k=1 (x&xk)
with

&1�x1<x2< } } } <xn�1 (1.1)

satisfies

|
1

&1
|n(x)m w(x) dx= min

P=xn+ } } } |
1

&1
P(x)m w(x) dx, (1.2)
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then the quadrature formula with certain numbers cikm :=cikmn (called
Cotes numbers of higher order)

|
1

&1
f (x) w(x) dx= :

m&2

i=0

:
n

k=1

cikm f (i)(xk) (1.3)

is exact for all f # Pmn&1 .
As Tura� n pointed out in [8, p. 46], particularly interesting is the

Chebyshev weight

w(x)=
1

? - 1&x2
. (1.4)

By a theorem of Bernstein [1], in this case the n th Chebyshev polynomial
of first kind 21&nTn(x) is the solution of (1.2) for all even m # N. This
elegant property is very useful, say, this makes it possible to give an explicit
formula for the Cotes numbers cikm [7]. Examples of other weights for
which the solutions of (1.2) are independent of m (but vary with n) can be
found in the recent paper [4] given by Gori and Miccelli. It is natural to
ask whether or not there are other weights having this property. Clearly,
a linear transformation of the weight (1.4)

w(x)=v:, ;(x) :={
1

? - (x&:)(;&x)
, x # (:, ;),

(1.5)
0, x � (!, ;),

also admits this property. The aim of this note is to prove that the
Chebyshev weight (1.4) is the only weight (up to a linear transformation).
In fact, we shall prove slightly more:

Theorem. Let w be a weight supported in [&1, 1] such that �1
&1 w(x) dx

=1. If the formula (1.2) holds for the following pairs (m, n):

m={m1 , m2 , ...,
2, 4,

if n=1, 2, 4,
if n=3, 5, 6, ...,

(1.6)

where [mk]�
k=1 is a strictly increasing sequence of even natural numbers such

that m1=2 and

:
�

k=1

1
mk

=�, (1.7)

then there exists two numbers : and ; such that w=v:, ; .
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This paper is organized as follows: In Section 2 some auxiliary lemmas
are provided and in Section 3 the proof of the theorem is given.

2 AUXILIARY LEMMAS

Lemma 1. Let 2(w)=[a, b] and let [mk]�
k=1 be a strictly increasing

sequence of odd natural numbers satisfying (1.7). If for a point c # (a, b) the
relation

|
b

a
(x&c)m w(x) dx=0 (2.1)

holds for every m=mk , then (2.1) holds for every odd m # N. Moreover,

c=
a+b

2
(2.2)

and

w(c&x)=w(c+x), a.e.

Proof. Clearly, (2.3) implies that (2.2) is valid in (2.1) holds for every
odd m # N. So it is enough to prove (2.3). Let ! and $ satisfy
0<!<!+$<h, where h=max[c&a, b&c]. Put

0, x # [0, !],

f$(x)={x&!
$

, x # [!, !+$],

1, x # [!+$, h]

and f$(x)=&f$(&x), x # [&h, 0]. Clearly, f$ # C[&h, h] and f$ is an odd
function. By the Mu� ntz Theorem [3, p. 197] it follows from (1.7) that
given an arbitrary number =>0 there is a polynomial of the form
P=(x)=� ak xmk such that

| f$(x)&P=(x)|�=, x # [&h, h].

Hence

| f$(x&c)&P=(x&c)|�=, x # [c&h, c+h]. (2.4)

Since (2.1) holds for every m=mk , we obtain

|
c+h

c&h
P=(x&c) w(x) dx=0,
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which, coupled with (2.4), yields

} |
c+h

c&h
f$(x&c) w(x) dx }�=.

Noting that f$(x&c) is independent of = and = is arbitrary, we have

|
c+h

c&h
f$(x&c) w(x) dx=0.

Furthermore, as $ � � we get

|
c&!

c&h
w(x) dx=|

c+h

c+!
w(x) dx.

Differentiating this relation with respect to ! gives

w(c&!)=w(c+!), a.e.

This is equivalent to (2.3). K

Lemma 2. Let 2(w)=[a, b] and let [mk]�
k=1 be a strictly increasing

sequence of even natural numbers satisfying (1.7). If for a point c # (a, b) the
formula

|
b

a
(x&c)m w(x) dx=min

t |
b

a
(x&t)m w(x) dx (2.5)

holds for every m=mk , then (2.5) holds for every even m # N. Moreover,
(2.2) and (2.3) are valid.

Proof. Since (2.5) means

|
b

a
(x&c)m&1 w(x) dx=0,

our conclusions follow directly from Lemma 1. K

Lemma 3. Let 2(w)=[a, b] and let [mk]�
k=1 be a strictly increasing

sequence of even natural numbers satisfying (1.7). Further, assume that (2.2)
and (2.3) are valid. If for a number d the formula

|
b

a
[(x&c)2&d]m w(x) dx=min

t |
b

a
[(x&c)2&t]m w(x) dx (2.6)
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holds for every m=mk , then (2.6) holds for every even m # N. Moreover,

d=
(b&a)2

8
(2.7)

and

- (x&a)(b&x) w(x)=|x&c| w(- (x&a)(b&x)). (2.8)

Furthermore, for every even function f

|
b

a
f (x&c) w(x) dx=|

b

a
f (- (x&a)(b&x)) w(x) dx. (2.9)

Proof. For simplicity we treat the special case &a=b=1 (hence c=0)
only, because by the transformation x=((b&a)�2) y+((b+a)�2) the
general case will lead to this case. In this case (2.3), (2.7), (2.8), and (2.9)
become

w(&x)=w(x), a.e., (2.10)

d= 1
2 , (2.11)

- 1&x2 w(x)=|x| w(- 1&x2), (2.12)

and

|
1

&1
f (x) w(x) dx=|

1

&1
f (- 1&x2) w(x) ds. (2.13)

Meanwhile, under the assumption (2.10) in this case (2.6) holds if and only
if

|
1

&1
(x2&d )m&1 w(x) dx=0. (2.14)

It follows from (2.10) and (2.14) that

|
1

0
(x2&d )m&1 w(x) dx=0.

By using the substitution x=- y according to the assumptions of the
lemma the relation

|
1

0
( y&d )m&1 w(- y)

- y
dy=0 (2.15)
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holds for every m=mk . Applying Lemma 1 we conclude that (2.15), (2.14),
and (2.6) hold for every even m. Moreover, we obtain (2.11) and

w(-
1
2& y)

-
1
2& y

=
w(- 1

2+ y)

-
1
2+ y

,

which, using the substitution y=x2& 1
2 , gives (2.12). In order to obtain

(2.13) we apply (2.12) and use the substitution x=- 1& y2:

|
1

&1
f (x) w(x) dx=2 |

1

0
f (x) w(x) dx

=2 |
1

0
f (x)

xw(- 1&x2)

- 1&x2
dx

=2 |
1

0
f (- 1& y2) w( y) dy

=|
1

&1
f (- 1&x2) w(x) dx. K

Lemma 4. Let

&j=
1
? |

1

&1
x j dx

- 1&x2
, j=0, 1, ... .

Then

&2 j+1=0, &2 j=
(2 j)!

22 j ( j !)2 , j=0, 1, 2, ... .

Proof. The first formula is trivial. To prove the second use the well-
known formula [5, Formula 1.320�5, p. 25]

cos2 j t=2&2 j _ :
j&1

k=0

2 \2 j
k + cos(2 j&2k) t+\2 j

j +&
and obtain

x2 j=2&2 j _ :
j&1

k=0

2 \2 j
k + T2 j&2k(x)+\2 j

j +& .
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Hence

&2 j=2&2 j \2 j
j +=

(2 j)!
22 j ( j !)2 . K

3. PROOF OF THE THEOREM

As in the proof of Lemma 3 it is enough to treat the special case
&a=b=1 (hence c=0) and to prove (1.4). Let

+j=|
1

&1
x jw(x) dx, j=0, 1, ...

Then according to the Favard Theorem [6, Vol. 2, Chap. 8, Sec. 6] it is
sufficient to establish

+j=&j , j=0, 1, ... (3.1)

We separate the cases when j�8 and all other values of j.
By Lemma 2 we have (2.10) and hence

+2 j+1=0, j=0, 1, ... (3.2)

Meanwhile by means of Lemma 3 (2.11)�(2.14) holds. It follows from
(2.11) and (2.14) with m=2, 4, 6 that

+2=d= 1
2 , (3.3)

+6=3d+3&3d 2+2+d 3= 3
2+4& 1

4 , (3.4)

+10=5d+8&10d 2+6+10d 3+4&5d 4+2+d 5= 1
2 (5+8&5+4+1). (3.5)

On the other hand, |3 and |4 by (2.10) take the forms

|3(x)=x(x2&e), |4(x)=(x2& p)(x2&q) ( p<q)

with certain constants e, p, and q and by (1.2) satisfy

|
1

&1
|3(x) xw(x) dx=|

1

&1
|3(x)3 xw(x) dx=0, (3.6)

|
1

&1
|4(x) w(x) dx=0, (3.7)

|
1

&1
|4(x) x2w(x) dx=0.
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By calculation we obtain, using (3.3) and (3.4),

+4=e+2=
e
2

, (3.8)

+10=3e+8&3e2+6+e3+4=3e+8+
e2

4
(2e2&9e+3), (3.9)

+4=( p+q) +2& pq=
1
2

( p+q)& pq, (3.10)

+6=( p+q) +4& pq+2=
1
2

( p+q)2& pq( p+q)&
1
2

pq. (3.11)

Substituting (3.10) into (3.4) and using (3.11) gives

2( p+q)2&(4pq+3)( p+q)+4pq+1=0.

Solving this equation with the unknown p+q, we obtain two solutions
p+q=2pq+ 1

2 and

p+q=1. (3.12)

We claim that the first solution does not satisfy (3.7). In fact, it implies
( p& 1

2)(q& 1
2)=0, i.e., p= 1

2 or q= 1
2. But if p= 1

2, say, then it follows from
(3.7) and (2.13) that

|
1

&1
(x2& 1

2)(x2&1+q) w(x) dx=0,

which, together with (3.7), yields

|
1

&1
(x2& 1

2)2 w(x) dx

= 1
2 |

1

&1
[(x2& 1

2)(x2&q)+(x2& 1
2)(x2&1+q)] w(x) dx=0,

a contradiction.
To obtain another equation about p and q we use (1.2) and (2.10) to get

|
1

0
[(x2& p)(x2&q)]m&1 w(x) dx=0.
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Substituting x=- y+ 1
2 into the above equation and using (3.12) gives

|
1�2

&1�2 \y2+ pq&
1
4+

m&1 w(- y+ 1
2)

- y+ 1
2

dy=0.

By the substitutions y=&- x on the interval [&1
2 , 0] and y=- x on the

interval [0, 1
2], respectively, we get

|
1�4

0 \x+ pq&
1
4+

m&1

_ w(- 1
2&- x)

- x - 1
2&- x

+
w(- 1

2+- x)

- x - 1
2+- x& dx=0,

which holds for every m=mk by the assumptions of the theorem. Applying
again Lemma 1 we get 1�4& pq=1�8. Hence pq=1�8, which by (3.12)
gives

p=
2&- 2

4
, q=

2+- 2
4

. (3.13)

Then by (3.10), (3.4), (3.5), (3.8), and (3.9) we obtain +4=3�8, +6=5�16,

+10=
5
2

+8&
7

16
,

+10=
9
4

+8&
189
512

.

The last two equations give +8=35�128. Comparing + j with &j we prove
(3.1) for j�8.

To prove (3.1) for all other values of j according to the assumptions of
the theorem we have that for n�3

|
1

&1
f (x) w(x) dx= :

n

k=1

c0k2 f (xk), f # P2n&1 , (3.14)

|
1

&1
f (x) w(x) dx= :

2

i=0

:
n

k=1

cik4 f (i)(xk), f # P4n&1 . (3.15)

We claim that given 3n values +j , j=0, 1, ..., 3n&1, one can uniquely deter-
mine 4n values +j , j=0, 1, ..., 4n&1. In fact, let |n(x)=�n

j=0 cj x j with
cn=1. Substituting f (x)=|n(x) x i, i=0, 1, ..., n&1, into (3.14) yields

:
n&1

j=0

c j+i+ j=&+i+n , i=0, 1, ..., n&1. (3.16)
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Since the determinant of the coefficient matrix of this system det
[+i+ j]n&1

i, j=0>0, we can uniquely determine the solution c0 , ..., cn&1 , from
which one gets its roots x1 , ..., xn . Now let Aik # P3n&1 be the fundamental
functions for (0, 1, 2) interpolation, i.e.,

A (+)
ik (x&)=$i+ $k& , i, +=0, 1, 2; k, &=1, 2, ..., n.

Then by (3.15)

cik4=|
1

&1
Aik(x) w(x) x, i=0, 1, 2; k=1, 2, ..., n, (3.17)

which are uniquely calculated from + j , j=0, 1, ..., 3n&1. Hence we can
further calculate using (3.15), + j , j=0, 1, ..., 4n&1. This proves our claim.
According this claim using the initial 9 values +0 , ..., +8 , we can uniquely
determine all moments +0 , +1 , ... by induction, because 4n�3(n+1) when
n�3. Since the initial 9 values of the moments and the equations
(3.14)�(3.17) to determine their moments successively are the same for the
weight w and the Chebyshev weight, we can obtain (3.1) and hence (1.4).

K
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