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As we know, the Chebyshev weight w(x)=(1—x2)~"2 has the property: For
each fixed n, the solutions of the extremal problem 5171 [T (x —x) 1" w(x) dx
=Milp_ ... [1,1 P(x)" w(x) dx for every even m are the same. This paper proves
that the Chebyshev weight is the only weight having this property (up to a linear
transformation).  © 1999 Academic Press

1. INTRODUCTION AND MAIN RESULTS

Let w be a weight (function) on R satisfying that w(x) =0 for |x| > 1 and
jl_l w(x)dx=1 and let 4(w) denote the smallest closed interval such that
L,(W) w(x) dx =1. Denote by P, the set of polynomials of degree at most N.
According to Theorem 4 in [2], for even me N if o, (x) :=]1%_; (x —x)
with

—I<x<x,< - <x,<1 (L.1)
satisfies
1 1
J w,(x)" w(x)dx= min f P(x)" w(x) dx, (1.2)
—1 P=x"+ ... J_1
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then the quadrature formula with certain numbers ¢y, := Cym (called
Cotes numbers of higher order)

1 m—2 n )

J 1f(X) wx)dx= 3 Y ComfP(x) (1.3)

i=0 k=1

is exact for all feP,,,_;.
As Turan pointed out in [8, p. 46], particularly interesting is the
Chebyshev weight

1
n/1—x%

By a theorem of Bernstein [ 1], in this case the nth Chebyshev polynomial
of first kind 2'="T,(x) is the solution of (1.2) for all even meN. This
elegant property is very useful, say, this makes it possible to give an explicit
formula for the Cotes numbers c,,, [7]. Examples of other weights for
which the solutions of (1.2) are independent of m (but vary with n) can be
found in the recent paper [4] given by Gori and Miccelli. It is natural to
ask whether or not there are other weights having this property. Clearly,
a linear transformation of the weight (1.4)

w(x) = (1.4)

TR I

T
0, x¢(S P,

W(X) =0, 4(X) 1=

also admits this property. The aim of this note is to prove that the
Chebyshev weight (1.4) is the only weight (up to a linear transformation).
In fact, we shall prove slightly more:

THEOREM. Let w be a weight supported in [ —1, 1] such that jl_l w(x) dx
= 1. If the formula (1.2) holds for the following pairs (m, n):

2,4, if n=3,5,6,..

where {my;} 7_, is a strictly increasing sequence of even natural numbers such

that m, =2 and

=0, (1.7)

T8

1
1Mk

then there exists two numbers o and [} such that w=uv, g.
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This paper is organized as follows: In Section 2 some auxiliary lemmas
are provided and in Section 3 the proof of the theorem is given.

2 AUXILIARY LEMMAS

LemMA 1. Let A(w)=1[a,b] and let {m;}_, be a strictly increasing
sequence of odd natural numbers satisfying (1.7). If for a point c € (a, b) the
relation

jb (x— )™ w(x) dx =0 (2.1)

holds for every m=my, then (2.1) holds for every odd m e N. Moreover,

a+b
C=
2

(2.2)

and
w(c—x)=w(c+ x), a.e.
Proof. Clearly, (2.3) implies that (2.2) is valid in (2.1) holds for every

odd meN. So it is enough to prove (2.3). Let & and J satisfy
0<&<&+0<h, where h=max{c—a, b—c}. Put

0, xe[0,£&],
=025 xele et
1, xe[E+6,h]

and fy(x)= —fs(—x), xe[ —h, 0]. Clearly, f5 € C[ —h, h] and f; is an odd
function. By the Miintz Theorem [3, p. 197] it follows from (1.7) that
given an arbitrary number &>0 there is a polynomial of the form
P,(x)=3 a;x™ such that

|f5(x) = Px)|<e,  xe[—h h]
Hence
|fs(x—c)—P(x—c)| <e, xelec—h,c+h]. (2.4)

Since (2.1) holds for every m =m,, we obtain

JHh P (x—c)w(x)dx=0,

c—h
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which, coupled with (2.4), yields

Jﬁhf(;(x—c) w(x)dx|<e.

Noting that f35(x —¢) is independent of ¢ and ¢ is arbitrary, we have
c+h
f fy(x—¢) wx) dx =0.
c—h
Furthermore, as 6 — oo we get

JCié w(x) dx = JHh w(x) dx.

c—h c+¢&
Differentiating this relation with respect to & gives
w(c—¢&)=w(c+¢), a.c.

This is equivalent to (2.3). |

LEMMA 2. Let A(w)=[a,b] and let {m;}
7).

1 be a strictly increasing
sequence of even natural numbers satisfying (1.7). If for a point c€(a, b) the
formula

b b
f (x—¢)" w(x) dx =min f (x—1)"w(x) dx (2.5)

a t a

holds for every m=my, then (2.5) holds for every even me N. Moreover,
(2.2) and (2.3) are valid.

Proof. Since (2.5) means

fb (x—c)" L w(x)dx=0,

a

our conclusions follow directly from Lemma 1. ||

LemMA 3. Let A(w)=1[a,b] and let {m,}7_, be a strictly increasing
sequence of even natural numbers satisfying (1.7). Further, assume that (2.2)
and (2.3) are valid. If for a number d the formula

jb [(x—¢)2—d]” w(x) dx = min jb [(x—c)—1]"w(x)dx  (2.6)

a t a
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holds for every m=my, then (2.6) holds for every even me N. Moreover,

(b—a)
8

d:

(2.7)

and
(x—a)(b—x)w(x)=|x—c| w(/(x—a)(b—x)). (2.8)

Furthermore, for every even function f

jb flx—¢) w(x) dx = jb £/ (x—a)(b—x)) w(x) dx. (2.9)

Proof. For simplicity we treat the special case —a=b=1 (hence ¢=0)
only, because by the transformation x=((b—a)/2) y+((b+a)/2) the
general case will lead to this case. In this case (2.3), (2.7), (2.8), and (2.9)
become

w(—x)=w(x), a.c., (2.10)
d=1, (2.11)

V1 =x2w(x)=|x| w(/1—x3?), (2.12)
and

jl F(x) w(x) dx = fl FST=2) w(x) ds. (2.13)

Meanwhile, under the assumption (2.10) in this case (2.6) holds if and only
if

jl (x> —d)" " w(x) dx =0, (2.14)

It follows from (2.10) and (2.14) that
1
J (x> —d)™ 1 w(x) dx=0.
0

By using the substitution x=ﬁ according to the assumptions of the
lemma the relation

fl(y—d)’”_lw(\ﬁ)dy=0 (2.15)
0 y

N
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holds for every m = m,. Applying Lemma 1 we conclude that (2.15), (2.14),
and (2.6) hold for every even m. Moreover, we obtain (2.11) and

which, using the substitution y=x?—13, gives (2.12). In order to obtain
(2.13) we apply (2.12) and use the substitution x =./1 — y%

LEMMA 4. Let

Then

P )]
v2j+1_ s v2j_22j(j!)29

Jj=0,1,2, ...

Proof. The first formula is trivial. To prove the second use the well-
known formula [5, Formula 1.320-5, p. 25]

cos¥ =2 [Zz( >cos2] 2k)t+<2]j>}

and obtain

¥ =2 [ jil 2 <ij> Ta;—o(X) + <2j>} .

k=0 J
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Hence

3. PROOF OF THE THEOREM

As in the proof of Lemma 3 it is enough to treat the special case
—a=b=1 (hence ¢c=0) and to prove (1.4). Let

1
,ujzj 1 xw(x)dx, j=0,1,..

Then according to the Favard Theorem [6, Vol. 2, Chap. 8, Sec. 6] it is
sufficient to establish

w=v, j=0,1,.. (3.1)

We separate the cases when j <8 and all other values of ;.
By Lemma 2 we have (2.10) and hence

Iu2j+l = 07 .]ZO, la (32)

Meanwhile by means of Lemma 3 (2.11)-(2.14) holds. It follows from
(2.11) and (2.14) with m =2, 4, 6 that

po=d=1, (3.3)
te = 3dus —3d°u, +d° =314 — 3, (34)
ﬂlo = Sd,us - 10d2/’t6 + 10d3/,l4_ 5d4ﬂ2 "F d5 = %(5#8 - 5/14 "F 1). (35)
On the other hand, w; and w, by (2.10) take the forms
wy(x)=x(x?—e),  wux)=(x*=p)x*—q) (p<q)

with certain constants e, p, and ¢ and by (1.2) satisfy

Jl w5(x) xw(x) dx = jl @5(x)3 xw(x) dx =0, (3.6)
f(MMMMMzQ (3.7)

jl w4(x) X?w(x) dx =0.
1
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By calculation we obtain, using (3.3) and (3.4),

e

= =— 38
Ha=¢€ls 5’ (3.8)

2
um:3e,ug—362/16+e3/¢4=3eu8+%(2e2—9e+3), (39)

us=(p+q)ur—pq==(p+q) —pq (3.10)

1 1
ﬂ6=(p+q)u4—pquz=§(p+q)2—pq(p+q)—§pq- (3.11)

Substituting (3.10) into (3.4) and using (3.11) gives
2p+q)*—(4pg+3)(p+q) +4pg+1=0.

Solving this equation with the unknown p + ¢, we obtain two solutions
p+q=2pq+3%and

pHq=1. (3.12)

We claim that the first solution does not satisfy (3.7). In fact, it implies

(p—3(qg—3%=0,1ie, p=1%or g=1 Butif p=1 say, then it follows from

(3.7) and (2.13) that

fl (x2—1)(x2— 1+ ¢) w(x) dx =0,
1

which, together with (3.7), yields

f (x2 — 1) w(x) dx

=%J11 [(x> =52 —q)+ (x> = 1)(x* — 1 +¢)] w(x) dx =0,

a contradiction.
To obtain another equation about p and ¢ we use (1.2) and (2.10) to get

Jl [(x2—=p)(x*—q)]" ' w(x)dx=0.
0
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Substituting x =./y + 3 into the above equation and using (3.12) gives

172 "= /y+3)
d =0.
L1/2 <y T 4> VY+i

By the substitutions y = —\/); on the interval [ —3,0] and y = \/); on the
interval [0, 1], respectively, we get

f:/4<x+pq—i>m_l[y'\j; ijﬁi\[)} =0,

which holds for every m = m, by the assumptions of the theorem. Applying
again Lemma 1 we get 1/4 — pg=1/8. Hence pg=1/8, which by (3.12)
gives

1m /2 14+ /2
=4f, qz-z\/. (3.13)

Then by (3.10), (3.4), (3.5), (3.8), and (3.9) we obtain s, = 3/8, s =5/16,

o7
ﬂlo—zﬂs 16°

9,18
#10—4,“8 512°

The last two equations give ug=35/128. Comparing u; with v; we prove
(3.1) for j<8.

To prove (3.1) for all other values of j according to the assumptions of
the theorem we have that for n >3

n

1
|| sy de= 3 eqafixo) fePy_1,  (314)

- k=1

1 2 n
|| fewxyde=3 Y epaf ). fePyr (315)

- i=0 k=1

We claim that given 3n values y;, j=0, 1, ..., 3n — 1, one can uniquely deter-
mine 4n values w;, j=0,1,..,4n—1. In fact, let w,(x)=37_,c;x’ with

¢, = 1. Substituting f(x)=w,(x) x’, i=0, 1, ..,n—1, into (3.14) yields

n—1

Y Cttiy = —tims =01, .n—1. (3.16)

j=0
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Since the determinant of the coefficient matrix of this system det
{uis j}z;:l0> 0, we can uniquely determine the solution ¢, ..., ¢,_, from
which one gets its roots xq, ..., x,,. Now let 4, € P5,_; be the fundamental
functions for (0, 1, 2) interpolation, i.e.,

AY(x,) =004, Lu=0,1,2; kv=12,..,n

Then by (3.15)
1
c,-k4=J 1A,-k(x) w(x) x, i=0,1,2; k=1,2,..,n, (3.17)

which are uniquely calculated from u;, j=0,1,..,3n—1. Hence we can
further calculate using (3.15), u;, j=0, 1, ..., 4n— 1. This proves our claim.
According this claim using the initial 9 values g, ..., 45, we can uniquely
determine all moments x,, i;, ... by induction, because 4n > 3(n+ 1) when
n>=3. Since the initial 9 values of the moments and the equations
(3.14)—(3.17) to determine their moments successively are the same for the
weight w and the Chebyshev weight, we can obtain (3.1) and hence (1.4).
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