On Turán Quadrature Formulas for the Chebyshev Weight*

Ying Guang Shi
Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080,
People's Republic of China
E-mail: syg@lsec.cc.ac.cn
Communicated by Borislav Bojanov

Received April 22, 1997; accepted in revised form October 29, 1997

As we know, the Chebyshev weight $w(x)=\left(1-x^{2}\right)^{-1 / 2}$ has the property: For each fixed n, the solutions of the extremal problem $\int_{-1}^{1}\left[\prod_{k=1}^{n}\left(x-x_{k}\right)\right]^{m} w(x) d x$ $=\min _{P=x^{n}+\ldots} \int_{-1}^{1} P(x)^{m} w(x) d x$ for every even m are the same. This paper proves that the Chebyshev weight is the only weight having this property (up to a linear transformation). © 1999 Academic Press

1. INTRODUCTION AND MAIN RESULTS

Let w be a weight (function) on \mathbb{R} satisfying that $w(x)=0$ for $|x|>1$ and $\int_{-1}^{1} w(x) d x=1$ and let $\Delta(w)$ denote the smallest closed interval such that $\int_{\Delta(w)} w(x) d x=1$. Denote by \mathbf{P}_{N} the set of polynomials of degree at most N. According to Theorem 4 in [2], for even $m \in \mathbb{N}$ if $\omega_{n}(x):=\prod_{k=1}^{n}\left(x-x_{k}\right)$ with

$$
\begin{equation*}
-1 \leqslant x_{1}<x_{2}<\cdots<x_{n} \leqslant 1 \tag{1.1}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\int_{-1}^{1} \omega_{n}(x)^{m} w(x) d x=\min _{P=x^{n}+\ldots} \int_{-1}^{1} P(x)^{m} w(x) d x \tag{1.2}
\end{equation*}
$$

[^0]then the quadrature formula with certain numbers $c_{i k m}:=c_{i k m n}$ (called Cotes numbers of higher order)
\[

$$
\begin{equation*}
\int_{-1}^{1} f(x) w(x) d x=\sum_{i=0}^{m-2} \sum_{k=1}^{n} c_{i k m} f^{(i)}\left(x_{k}\right) \tag{1.3}
\end{equation*}
$$

\]

is exact for all $f \in \mathbf{P}_{m n-1}$.
As Turán pointed out in [8, p. 46], particularly interesting is the Chebyshev weight

$$
\begin{equation*}
w(x)=\frac{1}{\pi \sqrt{1-x^{2}}} . \tag{1.4}
\end{equation*}
$$

By a theorem of Bernstein [1], in this case the nth Chebyshev polynomial of first kind $2^{1-n} T_{n}(x)$ is the solution of (1.2) for all even $m \in \mathbb{N}$. This elegant property is very useful, say, this makes it possible to give an explicit formula for the Cotes numbers $c_{i k m}$ [7]. Examples of other weights for which the solutions of (1.2) are independent of m (but vary with n) can be found in the recent paper [4] given by Gori and Miccelli. It is natural to ask whether or not there are other weights having this property. Clearly, a linear transformation of the weight (1.4)

$$
w(x)=v_{\alpha, \beta}(x):= \begin{cases}\frac{1}{\pi \sqrt{(x-\alpha)(\beta-x)}}, & x \in(\alpha, \beta), \tag{1.5}\\ 0, & x \notin(\xi, \beta),\end{cases}
$$

also admits this property. The aim of this note is to prove that the Chebyshev weight (1.4) is the only weight (up to a linear transformation). In fact, we shall prove slightly more:

Theorem. Let w be a weight supported in $[-1,1]$ such that $\int_{-1}^{1} w(x) d x$ $=1$. If the formula (1.2) holds for the following pairs (m, n) :

$$
m= \begin{cases}m_{1}, m_{2}, \ldots, & \text { if } n=1,2,4, \tag{1.6}\\ 2,4, & \text { if } n=3,5,6, \ldots\end{cases}
$$

where $\left\{m_{k}\right\}_{k=1}^{\infty}$ is a strictly increasing sequence of even natural numbers such that $m_{1}=2$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{m_{k}}=\infty \tag{1.7}
\end{equation*}
$$

then there exists two numbers α and β such that $w=v_{\alpha, \beta}$.

This paper is organized as follows: In Section 2 some auxiliary lemmas are provided and in Section 3 the proof of the theorem is given.

2 AUXILIARY LEMMAS

Lemma 1. Let $\Delta(w)=[a, b]$ and let $\left\{m_{k}\right\}_{k=1}^{\infty}$ be a strictly increasing sequence of odd natural numbers satisfying (1.7). If for a point $c \in(a, b)$ the relation

$$
\begin{equation*}
\int_{a}^{b}(x-c)^{m} w(x) d x=0 \tag{2.1}
\end{equation*}
$$

holds for every $m=m_{k}$, then (2.1) holds for every odd $m \in \mathbb{N}$. Moreover,

$$
\begin{equation*}
c=\frac{a+b}{2} \tag{2.2}
\end{equation*}
$$

and

$$
w(c-x)=w(c+x), \quad \text { a.e. }
$$

Proof. Clearly, (2.3) implies that (2.2) is valid in (2.1) holds for every odd $m \in \mathbb{N}$. So it is enough to prove (2.3). Let ξ and δ satisfy $0<\xi<\xi+\delta<h$, where $h=\max \{c-a, b-c\}$. Put

$$
f_{\delta}(x)= \begin{cases}0, & x \in[0, \xi] \\ \frac{x-\xi}{\delta}, & x \in[\xi, \xi+\delta] \\ 1, & x \in[\xi+\delta, h]\end{cases}
$$

and $f_{\delta}(x)=-f_{\delta}(-x), x \in[-h, 0]$. Clearly, $f_{\delta} \in C[-h, h]$ and f_{δ} is an odd function. By the Müntz Theorem [3, p. 197] it follows from (1.7) that given an arbitrary number $\varepsilon>0$ there is a polynomial of the form $P_{\varepsilon}(x)=\sum a_{k} x^{m_{k}}$ such that

$$
\left|f_{\delta}(x)-P_{\varepsilon}(x)\right| \leqslant \varepsilon, \quad x \in[-h, h] .
$$

Hence

$$
\begin{equation*}
\left|f_{\delta}(x-c)-P_{\varepsilon}(x-c)\right| \leqslant \varepsilon, \quad x \in[c-h, c+h] . \tag{2.4}
\end{equation*}
$$

Since (2.1) holds for every $m=m_{k}$, we obtain

$$
\int_{c-h}^{c+h} P_{\varepsilon}(x-c) w(x) d x=0,
$$

which, coupled with (2.4), yields

$$
\left|\int_{c-h}^{c+h} f_{\delta}(x-c) w(x) d x\right| \leqslant \varepsilon .
$$

Noting that $f_{\delta}(x-c)$ is independent of ε and ε is arbitrary, we have

$$
\int_{c-h}^{c+h} f_{\delta}(x-c) w(x) d x=0
$$

Furthermore, as $\delta \rightarrow \infty$ we get

$$
\int_{c-h}^{c-\xi} w(x) d x=\int_{c+\xi}^{c+h} w(x) d x .
$$

Differentiating this relation with respect to ξ gives

$$
w(c-\xi)=w(c+\xi), \quad \text { a.e. }
$$

This is equivalent to (2.3).
Lemma 2. Let $\Delta(w)=[a, b]$ and let $\left\{m_{k}\right\}_{k=1}^{\infty}$ be a strictly increasing sequence of even natural numbers satisfying (1.7). If for a point $c \in(a, b)$ the formula

$$
\begin{equation*}
\int_{a}^{b}(x-c)^{m} w(x) d x=\min _{t} \int_{a}^{b}(x-t)^{m} w(x) d x \tag{2.5}
\end{equation*}
$$

holds for every $m=m_{k}$, then (2.5) holds for every even $m \in \mathbb{N}$. Moreover, (2.2) and (2.3) are valid.

Proof. Since (2.5) means

$$
\int_{a}^{b}(x-c)^{m-1} w(x) d x=0
$$

our conclusions follow directly from Lemma 1.
Lemma 3. Let $\Delta(w)=[a, b]$ and let $\left\{m_{k}\right\}_{k=1}^{\infty}$ be a strictly increasing sequence of even natural numbers satisfying (1.7). Further, assume that (2.2) and (2.3) are valid. If for a number d the formula

$$
\begin{equation*}
\int_{a}^{b}\left[(x-c)^{2}-d\right]^{m} w(x) d x=\min _{t} \int_{a}^{b}\left[(x-c)^{2}-t\right]^{m} w(x) d x \tag{2.6}
\end{equation*}
$$

holds for every $m=m_{k}$, then (2.6) holds for every even $m \in \mathbb{N}$. Moreover,

$$
\begin{equation*}
d=\frac{(b-a)^{2}}{8} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{(x-a)(b-x)} w(x)=|x-c| w(\sqrt{(x-a)(b-x)}) . \tag{2.8}
\end{equation*}
$$

Furthermore, for every even function f

$$
\begin{equation*}
\int_{a}^{b} f(x-c) w(x) d x=\int_{a}^{b} f(\sqrt{(x-a)(b-x)}) w(x) d x . \tag{2.9}
\end{equation*}
$$

Proof. For simplicity we treat the special case $-a=b=1$ (hence $c=0$) only, because by the transformation $x=((b-a) / 2) y+((b+a) / 2)$ the general case will lead to this case. In this case (2.3), (2.7), (2.8), and (2.9) become

$$
\begin{align*}
w(-x) & =w(x), \quad \text { a.e., } \tag{2.10}\\
d & =\frac{1}{2} \tag{2.11}\\
\sqrt{1-x^{2}} w(x) & =|x| w\left(\sqrt{1-x^{2}}\right), \tag{2.12}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{-1}^{1} f(x) w(x) d x=\int_{-1}^{1} f\left(\sqrt{1-x^{2}}\right) w(x) d s \tag{2.13}
\end{equation*}
$$

Meanwhile, under the assumption (2.10) in this case (2.6) holds if and only if

$$
\begin{equation*}
\int_{-1}^{1}\left(x^{2}-d\right)^{m-1} w(x) d x=0 \tag{2.14}
\end{equation*}
$$

It follows from (2.10) and (2.14) that

$$
\int_{0}^{1}\left(x^{2}-d\right)^{m-1} w(x) d x=0
$$

By using the substitution $x=\sqrt{y}$ according to the assumptions of the lemma the relation

$$
\begin{equation*}
\int_{0}^{1}(y-d)^{m-1} \frac{w(\sqrt{y})}{\sqrt{y}} d y=0 \tag{2.15}
\end{equation*}
$$

holds for every $m=m_{k}$. Applying Lemma 1 we conclude that (2.15), (2.14), and (2.6) hold for every even m. Moreover, we obtain (2.11) and

$$
\frac{w\left(\sqrt{\frac{1}{2}-y}\right)}{\sqrt{\frac{1}{2}-y}}=\frac{w\left(\sqrt{\frac{1}{2}+y}\right)}{\sqrt{\frac{1}{2}+y}},
$$

which, using the substitution $y=x^{2}-\frac{1}{2}$, gives (2.12). In order to obtain (2.13) we apply (2.12) and use the substitution $x=\sqrt{1-y^{2}}$:

$$
\begin{aligned}
\int_{-1}^{1} f(x) w(x) d x & =2 \int_{0}^{1} f(x) w(x) d x \\
& =2 \int_{0}^{1} f(x) \frac{x w\left(\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}} d x \\
& =2 \int_{0}^{1} f\left(\sqrt{1-y^{2}}\right) w(y) d y \\
& =\int_{-1}^{1} f\left(\sqrt{1-x^{2}}\right) w(x) d x .
\end{aligned}
$$

Lemma 4. Let

$$
v_{j}=\frac{1}{\pi} \int_{-1}^{1} x^{j} \frac{d x}{\sqrt{1-x^{2}}}, \quad j=0,1, \ldots
$$

Then

$$
v_{2 j+1}=0, \quad v_{2 j}=\frac{(2 j)!}{2^{2 j}(j!)^{2}}, \quad j=0,1,2, \ldots .
$$

Proof. The first formula is trivial. To prove the second use the wellknown formula [5, Formula 1.320-5, p. 25]

$$
\cos ^{2 j} t=2^{-2 j}\left[\sum_{k=0}^{j-1} 2\binom{2 j}{k} \cos (2 j-2 k) t+\binom{2 j}{j}\right]
$$

and obtain

$$
x^{2 j}=2^{-2 j}\left[\sum_{k=0}^{j-1} 2\binom{2 j}{k} T_{2 j-2 k}(x)+\binom{2 j}{j}\right] .
$$

Hence

$$
v_{2 j}=2^{-2 j}\binom{2 j}{j}=\frac{(2 j)!}{2^{2 j}(j!)^{2}}
$$

3. PROOF OF THE THEOREM

As in the proof of Lemma 3 it is enough to treat the special case $-a=b=1$ (hence $c=0$) and to prove (1.4). Let

$$
\mu_{j}=\int_{-1}^{1} x^{j} w(x) d x, \quad j=0,1, \ldots
$$

Then according to the Favard Theorem [6, Vol. 2, Chap. 8, Sec. 6] it is sufficient to establish

$$
\begin{equation*}
\mu_{j}=v_{j}, \quad j=0,1, \ldots \tag{3.1}
\end{equation*}
$$

We separate the cases when $j \leqslant 8$ and all other values of j.
By Lemma 2 we have (2.10) and hence

$$
\begin{equation*}
\mu_{2 j+1}=0, \quad j=0,1, \ldots \tag{3.2}
\end{equation*}
$$

Meanwhile by means of Lemma 3 (2.11)-(2.14) holds. It follows from (2.11) and (2.14) with $m=2,4,6$ that

$$
\begin{align*}
\mu_{2} & =d=\frac{1}{2} \tag{3.3}\\
\mu_{6} & =3 d \mu_{3}-3 d^{2} \mu_{2}+d^{3}=\frac{3}{2} \mu_{4}-\frac{1}{4} \tag{3.4}\\
\mu_{10} & =5 d \mu_{8}-10 d^{2} \mu_{6}+10 d^{3} \mu_{4}-5 d^{4} \mu_{2}+d^{5}=\frac{1}{2}\left(5 \mu_{8}-5 \mu_{4}+1\right) \tag{3.5}
\end{align*}
$$

On the other hand, ω_{3} and ω_{4} by (2.10) take the forms

$$
\omega_{3}(x)=x\left(x^{2}-e\right), \quad \omega_{4}(x)=\left(x^{2}-p\right)\left(x^{2}-q\right) \quad(p<q)
$$

with certain constants e, p, and q and by (1.2) satisfy

$$
\begin{align*}
& \int_{-1}^{1} \omega_{3}(x) x w(x) d x=\int_{-1}^{1} \omega_{3}(x)^{3} x w(x) d x=0 \tag{3.6}\\
& \int_{-1}^{1} \omega_{4}(x) w(x) d x=0 \tag{3.7}\\
& \int_{-1}^{1} \omega_{4}(x) x^{2} w(x) d x=0
\end{align*}
$$

By calculation we obtain, using (3.3) and (3.4),

$$
\begin{align*}
& \mu_{4}=e \mu_{2}=\frac{e}{2} \tag{3.8}\\
& \mu_{10}=3 e \mu_{8}-3 e^{2} \mu_{6}+e^{3} \mu_{4}=3 e \mu_{8}+\frac{e^{2}}{4}\left(2 e^{2}-9 e+3\right), \tag{3.9}\\
& \mu_{4}=(p+q) \mu_{2}-p q=\frac{1}{2}(p+q)-p q \tag{3.10}\\
& \mu_{6}=(p+q) \mu_{4}-p q \mu_{2}=\frac{1}{2}(p+q)^{2}-p q(p+q)-\frac{1}{2} p q . \tag{3.11}
\end{align*}
$$

Substituting (3.10) into (3.4) and using (3.11) gives

$$
2(p+q)^{2}-(4 p q+3)(p+q)+4 p q+1=0 .
$$

Solving this equation with the unknown $p+q$, we obtain two solutions $p+q=2 p q+\frac{1}{2}$ and

$$
\begin{equation*}
p+q=1 \tag{3.12}
\end{equation*}
$$

We claim that the first solution does not satisfy (3.7). In fact, it implies $\left(p-\frac{1}{2}\right)\left(q-\frac{1}{2}\right)=0$, i.e., $p=\frac{1}{2}$ or $q=\frac{1}{2}$. But if $p=\frac{1}{2}$, say, then it follows from (3.7) and (2.13) that

$$
\int_{-1}^{1}\left(x^{2}-\frac{1}{2}\right)\left(x^{2}-1+q\right) w(x) d x=0
$$

which, together with (3.7), yields

$$
\begin{aligned}
\int_{-1}^{1} & \left(x^{2}-\frac{1}{2}\right)^{2} w(x) d x \\
& =\frac{1}{2} \int_{-1}^{1}\left[\left(x^{2}-\frac{1}{2}\right)\left(x^{2}-q\right)+\left(x^{2}-\frac{1}{2}\right)\left(x^{2}-1+q\right)\right] w(x) d x=0,
\end{aligned}
$$

a contradiction.
To obtain another equation about p and q we use (1.2) and (2.10) to get

$$
\int_{0}^{1}\left[\left(x^{2}-p\right)\left(x^{2}-q\right)\right]^{m-1} w(x) d x=0 .
$$

Substituting $x=\sqrt{y+\frac{1}{2}}$ into the above equation and using (3.12) gives

$$
\int_{-1 / 2}^{1 / 2}\left(y^{2}+p q-\frac{1}{4}\right)^{m-1} \frac{w\left(\sqrt{y+\frac{1}{2}}\right)}{\sqrt{y+\frac{1}{2}}} d y=0 .
$$

By the substitutions $y=-\sqrt{x}$ on the interval $\left[-\frac{1}{2}, 0\right]$ and $y=\sqrt{x}$ on the interval [$0, \frac{1}{2}$], respectively, we get

$$
\int_{0}^{1 / 4}\left(x+p q-\frac{1}{4}\right)^{m-1}\left[\frac{w\left(\sqrt{\frac{1}{2}-\sqrt{x}}\right)}{\sqrt{x} \sqrt{\frac{1}{2}-\sqrt{x}}}+\frac{w\left(\sqrt{\frac{1}{2}+\sqrt{x}}\right)}{\sqrt{x} \sqrt{\frac{1}{2}+\sqrt{x}}}\right] d x=0
$$

which holds for every $m=m_{k}$ by the assumptions of the theorem. Applying again Lemma 1 we get $1 / 4-p q=1 / 8$. Hence $p q=1 / 8$, which by (3.12) gives

$$
\begin{equation*}
p=\frac{2-\sqrt{2}}{4}, \quad q=\frac{2+\sqrt{2}}{4} . \tag{3.13}
\end{equation*}
$$

Then by (3.10), (3.4), (3.5), (3.8), and (3.9) we obtain $\mu_{4}=3 / 8, \mu_{6}=5 / 16$,

$$
\begin{aligned}
& \mu_{10}=\frac{5}{2} \mu_{8}-\frac{7}{16}, \\
& \mu_{10}=\frac{9}{4} \mu_{8}-\frac{189}{512} .
\end{aligned}
$$

The last two equations give $\mu_{8}=35 / 128$. Comparing μ_{j} with v_{j} we prove (3.1) for $j \leqslant 8$.

To prove (3.1) for all other values of j according to the assumptions of the theorem we have that for $n \geqslant 3$

$$
\begin{array}{ll}
\int_{-1}^{1} f(x) w(x) d x=\sum_{k=1}^{n} c_{0 k 2} f\left(x_{k}\right), & f \in \mathbf{P}_{2 n-1} \\
\int_{-1}^{1} f(x) w(x) d x=\sum_{i=0}^{2} \sum_{k=1}^{n} c_{i k 4} f^{(i)}\left(x_{k}\right), & f \in \mathbf{P}_{4 n-1} \tag{3.15}
\end{array}
$$

We claim that given $3 n$ values $\mu_{j}, j=0,1, \ldots, 3 n-1$, one can uniquely determine $4 n$ values $\mu_{j}, j=0,1, \ldots, 4 n-1$. In fact, let $\omega_{n}(x)=\sum_{j=0}^{n} c_{j} x^{j}$ with $c_{n}=1$. Substituting $f(x)=\omega_{n}(x) x^{i}, i=0,1, \ldots, n-1$, into (3.14) yields

$$
\begin{equation*}
\sum_{j=0}^{n-1} c_{j} \mu_{i+j}=-\mu_{i+n}, \quad i=0,1, \ldots, n-1 \tag{3.16}
\end{equation*}
$$

Since the determinant of the coefficient matrix of this system det $\left\{\mu_{i+j}\right\}_{i, j=0}^{n-1}>0$, we can uniquely determine the solution c_{0}, \ldots, c_{n-1}, from which one gets its roots x_{1}, \ldots, x_{n}. Now let $A_{i k} \in \mathbf{P}_{3 n-1}$ be the fundamental functions for $(0,1,2)$ interpolation, i.e.,

$$
A_{i k}^{(\mu)}\left(x_{v}\right)=\delta_{i \mu} \delta_{k v}, \quad i, \mu=0,1,2 ; \quad k, v=1,2, \ldots, n .
$$

Then by (3.15)

$$
\begin{equation*}
c_{i k 4}=\int_{-1}^{1} A_{i k}(x) w(x) x, \quad i=0,1,2 ; \quad k=1,2, \ldots, n, \tag{3.17}
\end{equation*}
$$

which are uniquely calculated from $\mu_{j}, j=0,1, \ldots, 3 n-1$. Hence we can further calculate using (3.15), $\mu_{j}, j=0,1, \ldots, 4 n-1$. This proves our claim. According this claim using the initial 9 values μ_{0}, \ldots, μ_{8}, we can uniquely determine all moments μ_{0}, μ_{1}, \ldots by induction, because $4 n \geqslant 3(n+1)$ when $n \geqslant 3$. Since the initial 9 values of the moments and the equations (3.14)-(3.17) to determine their moments successively are the same for the weight w and the Chebyshev weight, we can obtain (3.1) and hence (1.4).

REFERENCES

1. S. Bernstein, Sur les polynômes orthogonaux relatifs à un segment fini, J. Math. 9 (1930), 127-177; 10 (1931), 219-286.
2. B. D Bojanov, D. Braess, and N. Dyn, Generalized Gaussian quadrature formulas, J. Approx. Theory 46 (1986), 335-353.
3. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
4. L. Gori and C. Micceli, On weight functions which admit explicit Gauss-Turán quadrature formulas, Math. Comp. 65 (1996), 1567-1581.
5. I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products," Academic Press, New York, 1980.
6. I. P. Natanson, "Constructive Function Theory," Vols. I-III, Ungar, New York, 1964-1965.
7. Y. G. Shi, A solution of Problem 26 of P. Turán, Sci. China 38 (1995), 1313-1319.
8. P. Turán, On some open problems of approximation theory, J. Approx. Theory 29 (1980), 23-85.

[^0]: * Project 19671082 Supported by National natural Science Foundation of China.

